Overview Overview Search Search Up Up
Category: Technical Papers
Order Files by:
Default | Name | Author | Date | Hits
folder.png Technical Papers Files: 20
info Only registered and logged in users can download files from this category.
pdf.png 2013 - March - Baker - Keeping your eyes on the road

Philip Baker MIRSE

Aurecon Australia Pty Ltd

This paper will examine the challenges for signalling designers that follow from the move of signalling and control systems from the trackside to the cab. A case study will be drawn from the Llanbadarn incident where the train driver’s workload was such that he was perhaps distracted by looking at the ERTMS screen rather than out of the window. The signalling designer had not incorporated a level crossing warning into the ERTMS system so the train entered a level crossing where the booms were not down. Lessons learned and discussion about how we can avoid a similar situation.

Size 1.47 MB
pdf.png 2013 - March - Aitken - Communication in Emergency: Success or Failure?


Aitken & Partners

Emergency implies urgency. Not just urgency but abnormality. We have no difficulty dealing with what is normal, routine. However, when an emergency arises our systems are often found wanting.
Communication systems are not just collections of technology but are interactions between people, with technology interposed. The systems are inherently complex and over time they change: through changes in people, in organisations and in technology. The change may be subtle, an unnoticed drift from safe operation. Sometimes the change is only evident when an urgent, abnormal situation arises.

Incidents from around the world form the basis of this paper. In each of these incidents the communication system has failed those who depended on it in a time or emergency. In few of these incidents did the technology require repair: rather, a defect in the complex system of communication was exposed.

Myth and legend are inadequate substitutes for thorough training, system analysis and testing. Too often the consequence has been fatalities. This paper seeks to address some of the causes and suggest solutions.

Size 326.32 KB
pdf.png 2013 - June - Szacsvay - Washington Metro Train Crash

Paul Szacsvay FIRSE

Interfleet Technology

At 4:58 pm on Monday, June 22nd, 2009, in the middle of the afternoon rush hour, approaching Fort Totten station, Washington Metropolitan Area Transit Authority (WMATA) Metrorail train 112 ran into the rear of train 214 at close to line speed.

The impact caused the rear car of train 214 to telescope into the lead car of train 112, resulting in the death of nine people on board train112, including the train operator (driver). 52 people were transported to local hospitals, and a further 28 people with minor injuries were treated at the site and allowed to home.

Initial investigations by the National Transportation Safety Bureau (NTSB) focussed on human error and the possibility that the operator of train 112 may have been using her mobile phone at the time of the crash. As the investigation progressed it became clear that the crash was wholly attributable to the unsafe failure of a track circuit to detect train 214, and that this failure mode was far from being a one-off incident. The accident was largely attributable to failures of the signalling equipment and by the signalling discipline.

This paper describes the history of an unsafe failure mode dating back over 20 years, and the equally long chain of events and actions which not only failed to prevent the accident, but also made it almost inevitable that something like this would eventually happen.

Each individual incident, response and subsequent action or failure to act has parallels in the author's experience, and undoubtedly the reader will be able to relate the issues to their own experience. Far from being impossible in our own rail environment, it is evident that similar events could well have combined in our own working environment to produce equally dire outcomes. It may be only a matter of  good fortune that we are now in a position to draw lessons from others' misfortunes, rather than our own.

Size 913.73 KB
pdf.png 2013 - July - Strike and Crivelli - Using Axle Counters for Block Control The ARTC Experience

Michael Strike Managing Director

Selectrail (Australia) Pty Ltd

Jarrod Crivelli Project Engineer

Selectrail (Australia) Pty Ltd

Utilisation of axle counters over the last two decades has been expanding to encompass many signalling and non-signalling applications. Their uses range from simple triggering devices for wayside equipment such as hot box detectors and weighing systems, to more complex train detection systems for train signalling.

The use of high quality fail safe (SIL4) axle counters for occupancy detection have been widely applied in Australia for short track sections where communications are reliable and visual cues provide an extra level of safety confidence. Life cycle costs can be substantially lower with axle counters when compared to other technologies and with advancements in technology; capital costs can also be reduced.

Longer block sections introduce an extra degree of design and procedural complexity. In the past, it has been difficult to appreciate the benefits of axle counters in these longer sections. The experience of the Australian Rail Track Corporation with small scale applications has allowed development of good operating procedures and the confidence to expand their use to block sections on the Spencer Junction to Tarcoola Line in South Australia.


Size 260.18 KB
pdf.png 2013 - July - Skilton - Cost Effective Signalling - Sweating the Asset in New Zealand

John Skilton BE Hons. (Electrical and Electronic)


Generations of signalling engineers have been subjected to accusations that signalling is too expensive. This paper examines some of the techniques applied in New Zealand to provide cost effective signalling and train control systems. Case studies for the use of common SCADA platforms for train control and the use traffic light based level crossing systems in yard areas are provided. The paper concludes with a brief look at some trends in the signalling arena that may impact on the cost of train control systems in the future.

Size 1.93 MB
pdf.png 2013 - July - Nankervis - Managing Competency of Signalling Telecommunications Engineers and Maintainers

Phillip Nankervis Master of Professional Education and Training – Distance and Open Education

HRD Integrated Services

Rail signalling staff competency is critical to ensure that not only are staff able to perform the role they are employed but also in accordance with legislation, industry standard, licensing and regulation. Both national regulators and AROs today require competency based schemes be implemented to identify current competence to perform rail signalling related work. The national competency framework provides a well-developed system for identifying and managing competency recognising industry skills against AQF levels. These systems are complex to implement and costly to maintain. This paper introduces the current requirements for identifying competency for maintainers; it discusses the engineering levels and the barriers moving forward.

As rail signalling workers progress through their careers employers and regulators will need to collaborate and manage competencies following changes in signalling technologies, legislative and enterprise work practices. Changes in competency requirements will result in complex competency record keeping, administrative labour and the ongoing costs.


Size 131.17 KB
pdf.png 2013 - July - Hunter - Keeping the Cost of Projects Low - Benefits from Using Systems Engineering

Hugh Hunter MSc MBCS MIRSE Senior Consultant

Frazer-Nash Consultancy

We often read press statements slating a range of engineering projects for wasting taxpayer money. These are normally the results of failed or problematic projects which are cancelled, or projects which are having major issues and are suffering from features such as schedule overruns, project budget overruns or late variations to the scope.

These problems are often caused by:

• Ambiguity in the initial scope and requirements; and/or
• Requirements analysis not being performed at the project initiation phase; and/or
• The system requirements not having been agreed and signed off before the work begins; and/or
• Risk analysis having not been fully addressed; and/or
• Verification and validation of the system not being complete.

Systems engineering provides processes that are used to address these project problems.

A systems engineering approach is not often fully embraced in many rail projects. This is in stark contrast to most other engineering domains, which have now been through the discussion of the benefits of systems engineering and have embraced it, enjoying the benefits that it brings to their projects

This paper introduces the topic of systems engineering, addresses its benefits and shows that a systems engineering approach to projects can be used to reduce system development costs.

Size 1.62 MB
pdf.png 2013 - July - Finders - Flinders - A Point of Principle

Richard Flinders MIRSE Product Line Manager

Siemens Rail Automation

Some time ago the Australasian Committee decided that at least one paper a year would be presented to the Technical Meetings which covered basic principles. They were to be presentations that took a basic signalling/telecommunication subject and went through the principles of use and operation. They were to be aimed at younger members and those who had recently joined the profession. However it is to be hoped that maybe they also passed on some new information to older members as well. This paper is part of that series and looks at point operation (also known as switches, layouts and turnouts) and discusses some of the methods of moving points both mechanically and electrically. It also describes the various means of detecting that the points have moved to the required position and that they have been prevented from moving as a train passes over them. By necessity, some Civil Engineer's terms will have to be used in this paper!

Size 3.06 MB
pdf.png 2013 - July - Atchison - Upgrading the TasRail Train Control System

Brenton Atchison BSc (Hons), PhD

Siemens Rail Automation

Dirk Klokman BE, MBA

Siemens Rail Automation

David Baker DipPM

This paper describes a current project to upgrade the TasRail Train Control system. Commencing in October 2012, the project is part of a larger infrastructure renewal program for the TasRail network.

The current TasRail Train Control operations are based on Track Warrant Control using verbal radio communications to grant authorities to trains and track vehicles. The upgraded Train Control System is based on North American Positive Train Control (PTC), and combines a graphical Train Control Centre with electronic communication to onboard computers equipped with display and GPS location. The solution allows for communication and monitoring of electronic track warrants and provides an example of applying current technology to support improved safety and capacity for a Train Control system in a cost-effective fashion.

Size 860.21 KB
pdf.png 2013 - July - Hjort - Reducing Train Control Costs - The NSW Country Regional Network Experience

Graham Hjort BE(Hons), Grad Dip (Rail Sig)

4Tel Pty Ltd

Operation and maintenance of the Country Regional Network (CRN) was transferred to John Holland on 15 January 2012, with train control functions shifting to a newly created CRN control centre at Mayfield.

The centre was fitted out specifically for train operations with all supporting train control technology. 4Tel was contracted to deliver all train control technology, including: train control systems (train order and Rail Vehicle Detection), telemetry systems, voice and train communication systems, supporting systems for operations and maintenance, and data networks for all system and operational connectivity. All design, procurement, installation, configuration, testing and commissioning was done within a 12 month mobilisation period to enable operations to commence on 15 January 2012.

4Tel provides ongoing support for the CRN control centre systems including the provision of a 24/7 technical support desk working directly with the network control staff. All systems have been configured with system health monitoring and logging, in addition to alarm management provided via 4Site.

After 18 months of operation, the benefit of 24/7 onsite maintenance and supporting structure is now being realised. System availability exceeds all targets and industry benchmarks. With callout reductions and improved health monitoring, the costs for support of train control and signalling infrastructure is now being reduced.

Size 569.64 KB
pdf.png 2012- March - Russell & Cilia - The South Morang Rail Extension Project Journey

Jeff Russell

Signalling and Power Installation Manager John Holland Rail

John Cilia

Project Manager CPPM MAIPM AMIRSE UGL Limited

In the past two years, Melbourne has experienced an unprecedented growth in public transport patronage of almost 27%. A rapidly expanding population, increased CBD-based employment and rising petrol costs mean that more people than ever are using Melbourne’s trains.

The Epping and Hurstbridge lines together carry around 60,000 of Melbourne’s rail passengers each day, with significant growth expected to continue.

The South Morang Rail Extension Project will increase network capacity, improve system reliability and introduce extra services to meet the rapidly growing demand for public transport in Melbourne’s northern suburbs.

The South Morang Rail Extension Project is the first major rail extension to the metropolitan network since the city loop circa 1980. Built on the old rail reserve that runs through to Whittlesea, this multi-discipline project provides the residents of Thomastown, Epping, South Morang and surrounding suburbs with improved and accessible public transport amenities and ultimately safer and more reliable train travel opportunities.

The purpose of this paper is to provide an overview of the project in general, and to provide a more detailed account of the signalling technology adopted and the delivery method implemented.

Size 2.19 MB
pdf.png 2012 - Oct - Walsh - Audio Frequency Track Circuit Reliability Investigation

Alexander Walsh BEng(Computer)


Audio frequency track circuits are used extensively in railway signalling to detect the presence or absence of rail traffic. When track circuits fail they will indicate a section being occupied as part of their fail-safe design. This typically results in rail traffic being stopped and/or delayed.

The scope of this investigation is to gain a more thorough understanding of the design, specifications, operation and behaviour of these track circuits. An experimental approach has been used to relate theory with field measurements.

Frequency sweeps provide a new perspective to examine tuning and may prove to be an invaluable tool in diagnostics. A thermal testing program is identifying frequency drift in analogue transmitter and receiver units, The rail current meter is enhanced to allow simpler fault finding and an intermittent transmitter detector is developed.

The data and results of this investigation have identified reliability improvements that are expected to reduce the number of repeat failures and to better aid in the diagnosis of intermittent faults.

Size 1.04 MB
pdf.png 2012 - Oct - Griffiths - Software Reliability – An Oxymoron?

Alena Griffiths MIEAust, CPEng, PhD, BSc(Hons), LLB

RGB Assurance Pty Ltd

Rarely a week goes by without a major software failure featuring prominently in the news. Some problems, such as the reported "computer glitches" with Virgin Blue's check-in software in 2010, merely result in financial loss. Others, such as the Queensland Health payroll debacle, in 2011, contribute to the downfall of governments. And of course there have also been cases where software unreliability has contributed to unavailability of critical public infrastructure, and in some cases, loss of life.

But how vulnerable is the rail industry to software unreliability, and what's the real likelihood that software problems could actually stop the trains (or even crash the trains)?

This paper will provide a brief survey of the extent to which modern railways depend on correct software operation. We will show that this dependency extends from customer facing applications such as web-based journey planners and fare sales and collection systems, through to critical service delivery applications such as routing trains, scheduling essential maintenance, and responding to emergencies.

Having elaborated the dependence of modern railways on software technology, we will then proceed to discuss the vulnerabilities this presents.

We will describe the main reasons why software engineering is different from other engineering disciplines, and hence why reliability of software must be approached differently to reliability of other engineering products. The explanation will range from the science that underpins software engineering, through to the complexity inherent in modern software systems, and ultimately through to social issues such as regulation of the software engineering profession and the psychology of the software development process.

In particular, we will consider traditional approaches to reliability engineering and explain why these approaches in general translate poorly to software. Finally, we will talk about how software reliability is being approached in the Australian rail industry today, and provide some suggestions for improving our handling of, and hence reducing our vulnerability to, software reliability issues.

Size 134.61 KB
pdf.png 2012 - Oct - Gifford - Maintaining and Designing Signalling Systems for Reliability, Availability and Maintainability – Challenging the Paradigms, Beliefs and Sacred Cows

John Gifford FIRSE Signalling & Compliance Manager, Hunter Valley

Australian Rail Track Corporation

Most of you will be aware of the term Reliability Centred Maintenance (RCM). It is a standardised, defensible Maintenance Requirements Analysis process. The process originated in the military and aviation industries and is now accepted by, and applied across, many engineering organisations throughout the world for the development of system preventive maintenance requirements. The RCM process is derived from the application of Failure Modes, Effects and Criticality Analysis (FMECA) and recognises that preventive maintenance can only enable assets to achieve the inherent level of reliability designed and built into the equipment or system.

Identification and selection of preventive maintenance tasks are based on:

• Reliability characteristics of the equipment;
• Operating environment of the equipment; and
• Consequences of equipment failure.

In the event no effective preventive maintenance task is identified to manage a particular failure mode then the alternatives are:

• Run the equipment to failure;
• Design out the failure mode; or
• Continually Monitor the equipment

Most modern day signalling and control system equipment have undergone Reliability Availability Maintainability and Safety (RAMS) analysis during the development phase. Usually this is a standalone process that does not look deeply into the interfaces, e.g. RAMS analysis for point drive equipment does not go deeply into the track interface, train axle loads, etc. I have observed maintainability, including occupational health and safety aspects of many the signalling systems, comprising a variety of equipment and interfaces that have not been adequately considered.

Many opportunities for improvement in asset performance have been lost, largely through blind adherence to entrenched prescriptive standards, paradigms, beliefs and homage to the sacred cows. This paper will focus heavily in this area of opportunity and challenge engineers, designers, constructors and maintainers to question these paradigms, beliefs and sacred cows for the betterment of our railway industry and "keep the trains moving".

Size 571.56 KB
pdf.png 2012 - Oct - Burns - RAMS – is that when you have more than one sheep?

Peter Burns MBA BAppSci CPEng MIEAust MIRSE

PYB Consulting Pty Ltd

RAMS analysis and the setting of RAMS requirements (often expressed as single indices) are becoming common features of rail signalling projects.

But attempts to outsource RAMS objectives by attaching them as simple deliverables in project contracts often fail. This paper explores some of the reasons why this is so.

The paper takes a qualitative look at examples and processes of requirements analysis and requirements setting, particularly at key interfaces important to RAMS. These include:

• Interfaces with the rail environment and the world at large;
• Interfaces between signalling systems;
• Maintenance Policies and strategies;

It will be seen that the achievement of RAMS outcomes inherently involves alignment between many parties. Products do not stand alone; they are part of human centred systems. Success depends on openness by organisations and access to good engineering knowledge – these being the oxygen on which RAMS depend.

Size 422.38 KB
pdf.png 2012 - Oct - Boshier - Independent Verification of Light Rail Systems - What, when, how and why

Steve Boshier, MIRSE

Hyder Consulting Pty Ltd

Independent Verification is an area that is not always well understood, perhaps misunderstood, yet if applied correctly in can produce huge benefits for both the contractor and client when implemented at the start of a project. In recent years there has been a continual growth in the area of Light Rail Systems and with this growth, the complexities of delivering these networks has also grown.

As the number of Light Rail Systems continues to expand, they not only need systems to ensure their safe operation, but they need to be planned and implemented in a safe fashion. This is where the role of the Independent Verifier comes into play and provides just as an important service to ensure that the system owner receives what they were expecting to end up with.

The Verifiers core function is to ensure that the design, construction, procurement, acceptance testing, completion along with the planning and documentation for the operations and maintenance phase are carried out in accordance with the project requirements.

Size 214.92 KB
pdf.png 2012 - March - Wilson - Level Crossing Principles

Laurie Wilson

Rail Industry Safety and Standards Board

The Rail Industry Safety and Standards Board (RISSB) is a small dynamic organisation based in Canberra. The RISSB works with rail industry representatives to develop national rail standards. The RISSB works towards “harmonising rail through progressive improvement not delayed perfection.” One of the current standards recently completed is AS 7658 Level Crossings. This paper outlines the RISSB standards development process, the technical aspects and principles of the level crossings. All RISSB standards are accredited nationally in conjunction with Standards Australia. The RISSB development process leads the way in its quality and rigour to ensure a suitable outcome is achieved that benefits rail organisations at all levels and areas of the industry. The technical component of the RISSB AS document is derived from the discussions and contributions of representatives from rail organisations and is deemed by these contributors to be good practise for the rail industry.

The development of the level crossing standard is a significant achievement in that it had to take into consideration and facilitate an agreed outcome across a number of interfaces. The development of the level crossing principles were created in conjunction with the development of the level crossing standard.

Size 340.63 KB
pdf.png 2012 - March - Ginkel - Track Design and Maintenance

Henry van Ginkel FIE Aust

Opus Rail Pty Ltd

Track design and track maintenance, similar to signalling design and signalling maintenance have evolved over the years and go hand in hand. The requirements and tolerances are based on engineering principles and are modified from time to time after a review/investigation of an incident of one sort or another.

Over the last 50 or so years:
• track maintenance has progressed from manual to largely mechanical; track design has moved from largely manual to computer aided;
• track has gone from mainly jointed rail to Continuously Welded Rail; and
• the introduction of Rail Grinding has allowed a better rail/wheel interface resulting in less friction,
hence less rail and wheel wear, and also less fuel consumption.

Size 1.15 MB
pdf.png 2012 - March - Georgescu - Many Railways, One System - The Future with CBTC

Mircea P Georgescu

Product Strategy Manager Thales Canada, Transportation Solutions

Signalling is a conservative industry and has a cautious approach to adoption of new technology. Traditional signalling uses fixed blocks for train separation, leading to restrictions on train movements and line capacity. Communications Based Train Control (CBTC), developed in the 80’s, introduced moving block technology, providing improvements in capacity and allowing a fully automated operation. Recent developments have provided further reductions in hardware costs, reducing energy consumption and increasing system reliability. With advancements in standardisation and demand for interoperability, driven by major operators in New York, Paris and Shanghai, the future of CBTC is now.

Size 190.21 KB
pdf.png 2012 - March - Farooque - DTRS System Integration - Integrating Melbourne's Digital Train Radio System

Saulat Farooque MEng, BEng, BSc

Test and Integration Manager, DTRS Project, Siemens Australia Ltd

The Digital Train Radio System (DTRS) project with the Department of Transport (DoT) Victoria has evolved out of the need for a more robust, reliable and flexible Rail Communication System to replace the existing and ageing Urban Train Radio System (UTRS). The UTRS is coming towards the end of its maintainable life, and the need to upgrade to DTRS has become apparent to ensure operators can run and maintain a safe train network.

Based on a standard EIRENE GSM-R platform, the DTRS project represents a complex Software Centric System comprising of many subsystem and elements. Once fully integrated and tested, the DTRS would provide an enhanced Rail Communication System that is capable of superior voice communication, data transmissions and the flexibility for future upgrades by building on the GSM-R backbone.
This paper provides an overview of the DTRS project and all the Subsystems that make up the system. The paper also examines in detail the System Engineering process and how it has been applied to this project as a method of bringing all the DTRS Subsystems together to operate as an integrated system.

Size 1.24 MB

Log in/Register

Please note that new passwords must include a capital letter and a numeral.

Join IRSE Australasia to get member prices and features.

Search this site