Overview Overview Search Search Up Up
Category: Technical Papers
Order Files by:
Default | Name | Author | Date | Hits
folder.png Technical Papers Files: 20
info Only registered and logged in users can download files from this category.
pdf.png 2017 - March - Gillespie - Are CAD drawings the best way to design signalling systems

Rob Gillespie NTD Elec Eng.

I&E Systems Pty Ltd

Modern railway signalling systems now incorporate computer-based interlocking, and the wiring is predominantly simple input/output functions, so, is CAD really the best way to design these high integrity systems?

Size 1.05 MB
pdf.png 2017 - March - D'Cruz - Do we have the backbone to support emerging technologies?

Malcolm D’Cruz M.E. Mechatronics

Public Transport Authority of Western Australia

David Lim  MSc. Telecommunication Management

UXC Ltd – A CSC Company

Railways are always increasing the number of network services to cope with emerging technologies. The success of Communication Based Train Control (CBTC) depends on the ability of the backbone communication system to guarantee high bandwidths and reliability. Thus the traditional railway communication network is gradually moving towards a carrier grade network servicing both internal as well as external clients.

The aim of this paper is to show how Software Defined Networks (SDN) adopted by telecom service providers as a common platform for all network services can benefit the railway networking environment to cope with constantly emerging technologies.

Size 3.66 MB
pdf.png 2017 - March - Boshier - Technology based asset management

Steve Boshier FIRSE, FCILTA

Auckland Transport

Asset Management is an area that continues to develop through innovation, technical developments and through new ways of looking at whole of life management. In tough economic times, businesses often take short cuts with asset management in a bid to remain profitable. Its usually one of the first areas whose budget gets cut back for a whole range of reasons. Such a decision only provides a short term solution to a problem that ultimately gets worse and comes back to bite even greater.

Technologies such as BIM, Mobility, Analytics, and a suite of ISO standards represents a coming of age for rail systems asset management. They are transforming the rail sector and are helping to drive a long term approach to maintenance with benefits. One that is now allowing staff to do more with less whilst allowing them to improve the asset reliability, availability and system safety.

Size 1.77 MB
pdf.png 2017 - July - Wimberley - Cyber Security in a Heavy Haul Railway

Jeff Wimberley BE, Associate Member IRSE

Aurizon PTY LTD

As technology changes, modern railway signalling systems are becoming more and more reliant on IP Data networks for both their day to day operation as well as for their supportability. For example we now have processor based interlockings at one end of a yard being connected to object controllers at the other end of the yard using IP based data networks. We also have a need to remotely access interlockings and associated systems such as axle counters as well as the data network elements from a central location or a location remote to the organisation to monitor and maintain service of these systems. Whilst all of this takes a level of discipline and rigour to implement, it can also provide a less than secure pathway for an unauthorised person to gain access to the systems if Cyber Security considerations are ignored. This paper will discuss Aurizon’s recognition of the Cyber Security threat to the company as a whole and the signalling system in particular and what has been done to reduce the risks for both.

Size 378.78 KB

Jacek Mocki PhD, MSc, BEng CPEng MIRSE NPER


Shane Curtin MBA, BEng


Yulan Liu MSc, BEng MIRSE, RPEQ


This paper is focused on one of the strategies that could be undertaken when approaching innovative areas in rail engineering. It describes an adoption of developing rail standards e.g. EULYNX and railML. Authors aim to look into an example of engineering process, describing ways to improve the process by applying some predictable innovation (innovation that delivers an expected outcome) techniques. An improved outcome from such development could be applied more efficiently to the benefit of reducing uncertainty of a designer, optimising asset usage, reducing the operational cost and many more.

Size 847.19 KB
pdf.png 2017 - July - Gash - An engineer’s journey to achieving conscious competence

Cassandra Gash MIRSE, MIEAust, MAIPM, BEng(Hons), GDSignalling & Telecommunications,

CPPM Melbourne Metro Rail Authority, Senior Signalling Project Manager

This paper highlights the requirements and likely challenges a graduate engineer will encounter in their professional formative years, and provides recommendations on how to fast-track a career in the rail signalling industry.

The gap in professional engineering competence is assessed through comparison of the competence of a graduate en- gineer from university compared to that required for the rail signalling industry. The commonly used 70:20:10 learning and development model is reviewed, in the context of the industry, so that graduate engineer learning, development, and experience can be tailored to address these gaps and support career advancement.

The paper concludes with an examination of competence related Australian legislation and Rail Transport Operator’s requirements that an engineer must comply with to progress from a state of unconscious incompetence to conscious competence. This paper draws upon numerous sources and highlights the commonalities and some of the inconsisten- cies in approach to achieving competence.

Size 806.43 KB
pdf.png 2017 - July - Burns - Electronic virtual trainstops

Peter Burns MBA, BAppSci (Elect), FIRSE, CPEng, FIEAust

PYB Consulting

As signalling technology moves from the world of the fixed signal to the world of Communication Based systems, one major issue which arises is how to deal with the legacy unfitted train.
Traditionally, the available answers to that issue have been:
    •    Don’t allow non-fitted trains to run on the relevant part of the network (the captive fleet option); or 

    •    Build the Communications based System as an overlay on traditional signalling infrastructure including its 
fixed signals. 
This second option in particular denies the railway any of the cost benefits associated with the new technology and acts as a barrier to its use. 
This paper will explore the alternative – to make the signalling for the unfitted train an overlay on the underlying Communication Based Signalling, rather than the other way around. 
The method for doing this will be explored via the example of the Electronic Virtual Trainstop. We do not have one of these right now, but we are in a position to develop its specification.

In a world where the signal engineer has involvement in defining the train’s on-board systems, this paper will explore three specific subsystems and the interfaces between them needed to achieve operability. One subsystem is part of the infrastructure, associated with the communications based signalling itself. The second is conceptually portable, but operationally part of the equipment taken on board the train. The third is the electronic virtual trainstop itself – the core on-board system. 
The issue with defining an on-board system for an unfitted train seems apparent just looking at the terms. In reality, “lack of fitment” covers a range of possibilities, ranging from no fitment whatsoever, through a very basic system-independent facility (here we find the Electronic Virtual Trainstop) to a train fully fitted with somebody else’s Communication Based signalling. Each possibility will be discussed. 
By defining the intermediate system and some basic open interfaces, the paper will show how the issue of interoperability can be managed for the full range of possible trains.

Size 910.79 KB
pdf.png 2017 - July - Banerjee - Monologue of a Byte by Byte traveller

Somnath Banerjee B. Tech, FIRSE, MIEEE, MIRSTE, RPEQ

The history of “Byte by Byte” Railway signalling is also the history of new technology for Railway Signalling.  Any discussion on this subject will remain incomplete unless we know how to manage new technology bite by bite.

The introduction of new technology in Railway Signalling systems, more often than not, is a challenging exercise. This assumes significant importance because compared to the investment and its physical visibility its impact is very high. This paper discusses how the challenges can be managed in a structured manner.

Some important steps can help reduce the labour pains of introduction of new technology in a Railway signalling system.
    .    a)  Clear understanding of the operator’s need for the new technology. 

    .    b)  Choosing the right technology to match the operator’s expectations . 

    .    c)  Structuring the development to match the operator requirements using several independent blocks. This is 
again an important step and if not thought out properly, it can make changes to the design difficult and costly. 

    .    d)  Designing the sub-systems with enough resilience to allow with minimum effects to other sub-systems. 

    .    e)  A strategy for testing the sub-systems to ensure minimum changes to it once the sub-systems are integrated into a single system

Size 195.99 KB
pdf.png 2017 - July - Baker - Queensland Rail: AWS to ETCS


Queensland Rail

The principle form of train protection for the metropolitan rail region of Queensland has been the Automatic Warning system. In 1988 the ERICAB 700 Automatic Train Control system was introduced onto the regional North Coast Line of the Queensland Rail network. It was followed in 1994 by the WESTECT Automatic Train Protection system, which now provides train protection for over 2500 route kilometres on the regional rail network within Queensland. The Automatic Warning System remains the train protection system stalwart for the metropolitan rail network, ERICAB is no longer in use and the WESTECT Automatic Train Protection system is all but life-expired, so Queensland Rail now looks beyond these systems for the future application of train protection for the rail network – European Train Control System.

Size 1011 KB
pdf.png 2017 - July - Nardi and Revell - Migration methodologies for CBTC and ERTMS

Federico Nardi BCompE (Hons), RE(OIGenova)

Ansaldo STS Australia Pty Ltd

Howard Revell BA, CEng, RPE (Elec), RPEQ (Elec), HonFIRSE MIEEE

Ansaldo STS Australia Pty Ltd

This paper focuses on the differing aspects of the migration processes and methods involved in transforming existing legacy metro and mainline signalling systems over to CBTC or ERTMS based systems. Three of Ansaldo STS’s current European brownfield projects have been selected to provide scenarios, with each scenario offering a specific approach to a migration methodology that satisfies the particular nature of the project and the needs of the customer organisation funding the project.

The three scenarios relate to three different customer organisations:

  • Stockholm Metro Red Line - CBTC for Storstockholms Lokaltrafik (SL) 

  • Haparandabanan, part of the ESTER Project - ERTMS L2 for Trafikverket 

  • Florence – Rome HSL upgrade - ERTMS L2 for Rete Ferroviaria Italiana (RFI.

These scenarios provide a useful background concerning the need for effective system planning to support efficient design and implementation tasks, without causing disruption to revenue service traffic. However, despite this approach being very well established and practiced in our industry, it is very costly in terms of time, effort and funds and perhaps there is an alternative migration mitigation approach that could be investigated and adopted. These scenarios raise a number of points that may be usefully heeded by others involved in similar migration projects.

Size 1.26 MB
pdf.png 2016 - Sept - Cox - Level Crossings, When is enough, enough?

 Level crossings represent high risk exposure for railway operators.
 Obligation for engineers and railway operators is to ensure level crossing risks are seen to be reduced So Far As Is Reasonably Practicable (SFAIRP).
 Grade separation is best solution but how can we ‘sweat’ level crossing assets?
 Once you have ‘lights, booms and gongs’ what then?
 Road complexity, number of cars, type of traffic, frequency of trains all increase risk
 What else can we do?

Size 1.7 MB
pdf.png 2016 - July - Pfister - Swiss Army Knife vs KISS How to optimise a level crossing 1

Assuming you get the job to implement or update a new level crossing: You will be confronted with lots of stakeholders,
influencers and legislative guidelines. The national regulator is giving you a certain framework. Investors, be it the
railway operator or the infrastructure owner usually limit your ambitions in terms of money. There is only a limited budget
available and it needs to be spent wisely. In contrast, other stakeholders such as end users or neighbours, living next to
a crossing, usually tell you exactly how things should work - or more often - how they shouldn’t.
This document addresses general areas of conflict. Furthermore, it shows how national regulator, infrastructure owner or
operator can influence the value for money proposition to achieve improved cost structures or whole of life costs as well
what suppliers can do in order to ensure lower cost and safe level crossings. The paper highlights cost savings due to
better selected requirements and provides a simple example.

Size 526.19 KB
pdf.png 2016 - July - Macdougall - Headway as Part of the Operating Plan 1

Signal engineers and train operations staff often misunderstand each other when talking about headway.

When someone in the operations team refers to headway, they actually mean the interval between trains expressed in minutes. They assume that the interval between trains is enough to deliver a reliable on-time service.

Signal engineers however calculate headway as the absolute minimum time between following trains that will allow drivers to retain line speed without having to apply brakes due to passing yellow signals.

The signal design will generally try to space signals so that there is a fairly uniform headway across a section of line. The worst headway on the line sets the "ruling headway" for the line. This is sometimes called the theoretical signalling headway. Trains travelling closer than the ruling headway will meet at least one yellow signal and be forced to apply brakes, and will therefore lose time. This in turn will delay the following train and so on, causing cascading and compounding delays.

Several factors contribute to achieving reliable train frequencies, such as the permitted line speed, driver behaviour, train acceleration & braking rates, train length, signalling principles (such as overlap length), planned station dwell time, and most importantly, passenger behaviour.

This paper provides a brief background on classical headway theory; some insight on how track speed and station dwell time impact on achievable capacity; a case study to demonstrate that terminal stations may pose a greater constraint on capacity than the signalling; and a suggested method to allow quick assessment of achievable capacity on a new line.

Size 788.52 KB
pdf.png 2016 - July - Heibel - CBTC Versus ETCS - Score and Forecast 1 HOT

Modern in-cab signalling can increase capacity beyond the limits of conventional legacy systems and also improve service punctuality. The present market for in-cab signalling is divided in two segments. For mainline railways on a national level, the European Train Control System (ETCS) is preferred by railway operators well beyond the reach of European legislation. For high performance metro-style city railways, Communications Based Train Control (CBTC) is the solution of choice. Both technologies have different purposes and histories and consequentially developed distinct strengths but also weaknesses.

The suburban railway systems in the major Australian cities appear in a transition from a mainline legacy to high capacity metro ambitions. The technology selection between ETCS and CBTC is therefore less straightforward with no clear "right" or "wrong" and examples for either system evolving in Australia. However, operators need to recognise and accept the consequences of selecting either technology.

The paper concludes with an outlook on further development of both technologies, which concentrates on addressing the individual shortcomings while maintaining existing advantages. The evolving subject of "convergence" between ETCS and CBTC will be discussed to assess whether there will be only one "best" signalling technology in the future.

Size 352.4 KB
pdf.png 2016 - July - Green - Re-Engineering Level Crossing Safety 1

This paper describes components and processes to re-engineering level crossing safety by controlling the movement over level crossings for both road and rail vehicles. This is primarily aimed at highway crossings and in particular remotely located crossings on heavy haulage rail lines.

The rail corridor has always been designated as a permanent way with the train driver as the only stopping control to avoid collisions with obstructions. With the introduction of new technologies and driverless train projects the need to detect obstructions and control the passage of trains across conflict zones such as level crossings has become vital.

These new technologies must be introduced with strict operational guidelines that are fit for purpose. Technology that increases train delays due to false or unreliable alarms is not an acceptable solution.

System components for this design will include

 Duplicated Flashing Lights

 Duplicated Half Boom Gates

 Barrier protection around level crossing equipment locations

 CCTV with integrated crossing state logging

 Obstruction Detection in the crossing zone

 Duplicated Advance Warning Lights

 Road Speed Reduction

 Rumble Strips

 Full Road Pavement Markings and duplicated road signage

 Vital Communications to stop the train

All components play an important role in level crossing protection.

Size 344.02 KB
pdf.png 2016 - July - Burns - Time Based Movement Authorities 1

Modern communications based signalling places improved signalling functionality on board the train.

This can be used to enforce conventional temporary speed restrictions using location based authorities. With these the train ensures its speed is maintained below the temporary maximum between two defined points.

In a related class are time based authorities. A time based authority commences at a specified time and continue to a specified event (which is not necessarily time based). Two examples are presented.

The first relates to a requirement to restrict passing speeds within a long tunnel to below a specified maximum (as is the case for the Seikan tunnel in northern Japan).

In this case the signalling system is aware of the location and authorized speed of the two passing trains in advance. With this knowledge a passing point can be predicted in terms of location. However, a speed restriction based on this criterion can be shown to be unsound as a provider of safety. Thus a safety benefit is obtained by defining the passing point in terms of time; a time based authority emerges.

The second relates to level crossing protection.

It is conventional in a class of signalling to require a train to obtain an authority to cross a protected level crossing.

Communications base signalling allows a train to communicate its arrival time to the level crossing as part of the process for obtaining that authority. This is another class of time based authority – the train obtains authority to cross at a specified time.

Once communicated, the train is able to regulate its progress safely to ensure it does not arrive prior to the specified time. The crossing is able to ensure that the standard warning is provided prior to the authorised arrival time.

The paper explores the characteristics of, and requirements for time based authorities.

Size 330.09 KB
pdf.png 2016 - April - Naweed and Aitken - Lookout!

Anjum Naweed BSc (Hons), MSc, PhD, CPE

Central Queensland University

Jeanette Aitken BE (Hons), MEngSc, Dip VET, MIEEE, AMIRSE

Competency Australia


Trains are the fastest and heaviest of land vehicles and the intent of railway systems design is to transport them safely and efficiently from one location to another. Track workers and maintainers are the unsung heroes of rail safety but are often placed in dynamic and hazardous situations, rendering them vulnerable to the very things they work to protect. The dramatic irony inherent in their work is addressed by the “Lookout working’ concept of safeworking where a range of technologies are used to assist in the provision of acceptable margins of personal safety from approaching trains.

This technical paper aims to conceptualise the degrees of control and types of technologies used to protect the safety of track workers and maintain the security of their work sites. Presented from a human factors perspective using a systems thinking approach, the paper articulates key lessons that can be drawn from previous accidents and “near-misses” associated with failures in track worker protection, which have been investigated in the context of railways in the UK and Australasia. The objective of the paper is to evaluate the viability of utilising smarter technologies to achieve improvements in maintenance track worker safety within the Australian railway environment.

Size 1.07 MB
pdf.png 2016 - April - McPeake - Axle Counters in Single Line Sections - A Smart Solution to an Old Problem?

Thomas McPeake  MIET  AMIRSE


Axle counter technology is a proven, reliable method of track vacancy detection suited for a variety of installations. But despite the many advantages this technology can offer it has not rivalled conventional track circuits as a form of track vacancy detection within single line sections in Australia. This perhaps can be attributed to a number of inherent issues that impeded the effectiveness of axle counters system when configured to transmit data over long distances. However, in recent years there have been a number of advancements in both axle counter and telecommunications technology which have overcome some of these inherent issues. This paper investigates whether axle counter technology is now a smarter solution for single line sections, or if conventional track circuits still provide the best solution.

Size 1.11 MB
pdf.png 2016 - April - Lambla - Driver Advisory System Integration Steps

Bruno Lambla

Product Manager, TTG Transportation Technology, Australia

This paper first focuses on DAS technology insertion into the reality of the legacy of complex railway assets and provides one of TTG’s return on experience on DAS deployment.

In a second stage, we focus on steps for integration of DAS with other railway signalling systems. Integration is inevitable and will add value and capability to the DAS offer. Dynamic optimisation of standalone DAS can deliver energy savings of around 5 to 18% to train operating companies. Integration with traffic management systems (Connected DAS) will allow DAS to dynamically take into account other trains’ trajectory. This will allow to optimise the network capacity.

DAS remains a SIL 0 (SIL 1 in the case of C-DAS) system but can operate with Safety Systems such as ETCS. Integration with ETCS will require ETCS display to be modified so that the DAS graphical interface can be represented on the ETCS screen. This integration to a single visual display will ensure the driver can’t get any conflicting advice between DAS and ETCS. The conflicts will be managed through ETCS accepting or ignoring advice coming from DAS.
Integration has started and will continue so that information can be shared improving situation awareness. The value of the DAS advice will be increased. This integration will be made possible by deployment of traffic management systems, new telecommunications allowing constant and secure information flow, ETCS implementation.

Size 587.79 KB
pdf.png 2016 - April - Gray and Alexander - V2X: Vehicle to Everything (Including Rail)

Paul Gray B.Eng., M.Eng., Ph.D. Cohda Wireless
Paul Alexander B.Eng., M.Eng., PhD. Cohda Wireless


In 2010 Cohda Wireless conducted a feasibility study for the use of Dedicated Short Range Communications (DSRC) for improving rail level crossing safety.

DSRC is the globally coordinated standard for Cooperative Intelligent Transportation Systems (ITS). It combines GPS and wireless communication in dedicated spectrum at 5.9GHz. Safety-of-life applications, such as cooperative collision avoidance are the key feature of DSRC, and the 5.9GHz spectrum includes a communications channel dedicated to cooperative safety applications.

Vehicles use DSRC to share information by continually broadcasting their location, speed, direction, vehicle type and size, and additional status information. The DSRC system also includes a processor that uses local position information, and information received from other vehicles, to accurately detect potential collisions and activate driver warnings. DSRC Roadside Equipment (RSE) allows communications between vehicles and infrastructure, such as railway warning systems.

Size 1.31 MB

Log in/Register

Please note that new passwords must include a capital letter and a numeral.

Join IRSE Australasia to get member prices and features.

Search this site